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1 Introduction

You have certainly encountered the Dirac delta function δ(x − x0), which is often “defined” as
a function that is zero everywhere except for the point x0 where its value is infinity, in such a
way that the integral

∫
dx δ(x − x0) is equal to 1. This is definitely not a rigorous mathematical

definition, since such a function does not exist (if a function is zero everywhere except in a point,
its integral is zero).One may think: OK, this is physicist nonsense. Now, this is a bit extreme.
Physicists may be sloppy in their language sometimes, but we will see that there is indeed a precise
way to express the above statement.

What is clear is that the Dirac delta function is not a function in the proper sense, but it has to
be defined in a more complicated way. To be precise, one should refer to the Dirac delta function
as a generalized function or a distribution. Also, when we write something like∫

dx δ(x− x0)f(x) = f(x0) (1.1)

it is clear that the integral is not really an integral (since the integrand is not really a function).
A proper understanding of distributions goes necessarily through a proper understanding of what
the integral symbol means in this case. The theory of distributions is an extremely complicated,
yet beautiful, branch of Mathematics. Here we want to provide only the main ideas.

2 Basic definitions

The basic logical step to understand distributions is to realized that the integral of a distribution
times a function needs to be interpreted as a map from a space of functions to the complex numbers.
For instance∫

dx δ(x− x0)f(x) = f(x0) (2.1)

should be more properly though as:

the application of the delta function centered in x0 to the proper function f(x)

gives the number f(x0).

A better (i.e. more rigorous) way to denote this would probably be

δx0
(f) = f(x0) . (2.2)

The definition of distributions goes in two steps: we first need to define the space of functions on
which we want to apply the distributions, and then we can define the distribution themselves.

Let S be the space of Schwartz functions, i.e. functions ϕ(x) of a real variable x that are
infinitely differentiable, and decay rapidly (i.e. faster than any inverse power of |x|) at infinity
with all their derivatives. The property of rapid decay is equivalent to requiring that |xpϕ(q)(x)|
is a bounded function for every p, q ∈ N, which we can write as

∥xpϕ(q)∥∞ = sup
x∈R

|xpϕ(q)(x)| < ∞ . (2.3)

In the context of the theory of distributions, S is called the set of test functions. It is easy to
prove that S is a vector space, i.e. the sum of two Schwarz function is a Schwart function, and the
multiplication of a Schwarz function times a constant is a Schwart function.
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Example. The functions x3 and 1/(1+x2) are infinitely differentiable but they do not decay
rapidly.

Example. The function e−|x| decays rapidly, but it is not differentiable in x = 0.

Example. The function e−x2

is a Schwartz function.

We introduce a concept of convergence in the set of test functions. We will say that a sequence of
test functions ϕn converges to zero in S if, for every p, q ∈ N,

xpϕ(q)
n (x) → 0 as n → ∞ uniformly, (2.4)

which is the same as saying that

∥xpϕ(q)
n ∥∞ → 0 . (2.5)

Also, we say that ϕn → ϕ if the difference sequance ϕn − ϕ converges to zero.

Tempered distributions are defined as linear continuous functionals on S. Let us see a bit more
in detail what this means. First of all notice that we have used the word tempered, the reason
being that there are other types of distributions associated to other test function spaces. Tempered
distributions are among the most commonly used distributions in Physics. From now on we will
omit the word tempered. Distributions are functionals on S, i.e. they are maps T : S → C from
the space of test functions into the complex numbers. They are linear, i.e. they satisfy

T (α1ϕ1 + α2ϕ2) = α1T (ϕ1) + α2T (ϕ2) , (2.6)

for all Schwartz functions ϕ1, ϕ2 and all complex numbers α1, α2. Finally, distributions are con-
tinuous, i.e.

T (ϕn) → 0 whenever ϕn → 0 in S . (2.7)

The space of tempered distribution is denoted by S ′. Instead of the symbol T (ϕ) we will often use
the notation ⟨T, ϕ⟩ (but keep in mind that this is only notation, nothing more).

3 First example: regular distributions

Let u(x) be a measurable function with the property that a positive integer N exists such that

M ≡
∫

dx
|u(x)|
1 + x2N

< ∞ . (3.1)

In particular we do not assume any regularity on the function u(x). This class of functions includes
e.g. polynomials, eipx, θ(x), x−1/2, log |x| and much more horrible functions.

Then we define Tu the distribution associated to u as

Tu(ϕ) =

∫ ∞

−∞
dxu(x)ϕ(x) = ⟨Tu, ϕ⟩ . (3.2)

We want to see that this is indeed a distribution.
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First we need to prove that for any test function ϕ, the above integral is finite. We use the
inequality

|Tu(ϕ)| ≤
∫ ∞

−∞
dx |u(x)ϕ(x)| =

∫ ∞

−∞
dx

|u(x)|
1 + x2N

|(1 + x2N )ϕ(x)| . (3.3)

In the above formula we have divided and multiplied the integrand by 1 + x2N . Since ϕ is a
Schwarts function, the function (1 + x2N )ϕ(x) is bounded∣∣(1 + x2N )ϕ(x)

∣∣ ≤ |ϕ(x)|+ |x2Nϕ(x)| ≤ sup
x∈R

|ϕ(x)|+ sup
x∈R

|x2Nϕ(x)| = ∥ϕ∥∞ + ∥x2Nϕ∥∞ < ∞ .

(3.4)

Therefore

|Tu(ϕ)| ≤
{
∥ϕ∥∞ + ∥x2Nϕ∥∞

}∫ ∞

−∞
dx

|u(x)|
1 + x2N

= M
{
∥ϕ∥∞ + ∥x2Nϕ∥∞

}
< ∞ (3.5)

which is finite since, by assumption, M is finite.

Then we have to prove that Tu is linear. This is obvious from the definition

Tu(αϕ1 + βϕ2) =

∫ ∞

−∞
dxu(x)[αϕ1(x) + βϕ2(x)]

= α

∫ ∞

−∞
dxu(x)ϕ1(x) + β

∫ ∞

−∞
dxu(x)ϕ2(x)

= αTu(ϕ1) + βTu(ϕ2) . (3.6)

Finally we need to prove that Tu is continuous. Let ϕn be a sequence that converges to zero in S.
We recycle the same inequality that we have used to prove the finiteness of the integral

|Tu(ϕn)| ≤ M
{
∥ϕ∥∞ + ∥x2Nϕ∥∞

}
. (3.7)

Since ϕn → 0 in S, both ∥ϕn∥∞ and ∥x2Nϕn∥∞ converge to zero (by definition of convergence in
S). Therefore Tu(ϕn) → 0 which proves continuity.

The distributions constructed in this way are called regular distributions. It is customary to
identify the regular distribution Tu associated to u with u itself. One would therefore write

⟨u, ϕ⟩ ≡ ⟨Tu, ϕ⟩ . (3.8)

This is a slight abuse of notation which turns out to be very convenient. In this sense one says
that the set of distributions S ′ includes all the functions u which satisfy the condition (3.1).

4 Second example: delta function

It should be clear at this point that the Dirac delta function can be defined simply as

⟨δx0 , ϕ⟩ = ϕ(x0) . (4.1)

Both linearity and continuity are quite easy to prove. Give it a try!
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5 Third example: principal value 1/x

Another common distribution is the Cauchy principal value of 1/x. This distribution is often
denoted with one ov these symbols

P
1

x
, PV

1

x
,

P
x

,
PV
x

,
P
x

. (5.1)

Each of these symbols have to be considered as a single object, for instance there is no meaning
associated with the PV and the 1/x separately. The Cauchy principal value of 1/x is defined, as
any other distribution, by specifing its value when it acts on a test function. In this case,

⟨P
x
, ϕ⟩ = lim

ϵ→0+

∫
|x|>ϵ

dx
ϕ(x)

x
= lim

ϵ→0+

{∫ −ϵ

−∞
dx

ϕ(x)

x
+

∫ ∞

ϵ

dx
ϕ(x)

x

}
. (5.2)

First, we need to prove that the limit in the right-hand side is finite. This is not obvious, since the
two terms in the curly brackets may diverge in the ϵ → 0+ limit since the 1/x singularity at x = 0

is not integrable. The finiteness of the above limit comes from a cancellation of infinities.

To see how this works, we use the change of variables x → −x in the first integral in the curly
brackets in eq. (5.2)

⟨P
x
, ϕ⟩ = lim

ϵ→0+

{
−
∫ ∞

ϵ

dx
ϕ(−x)

x
+

∫ ∞

ϵ

dx
ϕ(x)

x

}
= lim

ϵ→0+

∫ ∞

ϵ

dx
ϕ(x)− ϕ(−x)

x
. (5.3)

Now we observe that the integrand has a finite x → 0 limit, as one can see e.g. by using de l’Hôpital

lim
x→0

ϕ(x)− ϕ(−x)

x
= 2ϕ′(0) . (5.4)

Notice that in order to argue that this is finite, we need to use the fact that ϕ(x) is a Schwartz
function, and in particular differentiable. Since the integrand in eq. (5.3) is continuous, the ϵ → 0+

simply yields the integral over x > 0, i.e.

⟨P
x
, ϕ⟩ =

∫ ∞

0

dx
ϕ(x)− ϕ(−x)

x
. (5.5)

This show finiteness. Linearity is easy to prove, while continuity can be a little tricky, but give it
a try!

6 Regularization of distributions

Let Tn be a sequence of distributions. We say that Tn converges to T ∈ S ′ if, for every test function
ϕ,

lim
n→∞

⟨Tn, ϕ⟩ = ⟨T, ϕ⟩ , (6.1)

and we write also Tn → T as n → ∞. This notion of convergence in S ′ is called weak convergence.

One can also consider a familily of distributions Tϵ which depends on a continuous parameter,
typically ϵ > 0. We will say that Tϵ converges to T ∈ S ′ (or weakly) if, for every test function ϕ,

lim
ϵ→0+

⟨Tϵ, ϕ⟩ = ⟨T, ϕ⟩ , (6.2)

This concept of convergence is called weak because it “includes” other well known concepts of
convergence, more precisely other types of convergenge usually imply weak convergence. Let us
see a few examples.
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1. If un is a sequence of continuous functions which converges uniformly to u, and if all these
functions satisfy the condition (3.1), then Tun converges weakly to Tu (and we often just say
un converges weakly to u). In fact

|⟨un, ϕ⟩ − ⟨u, ϕ⟩| =
∣∣∣∣∫ ∞

−∞
dx [un(x)− u(x)]ϕ(x)

∣∣∣∣
≤

∫ ∞

−∞
dx |un(x)− u(x)| |ϕ(x)|

≤ ∥un − u∥∞
∫ ∞

−∞
dx |ϕ(x)| → 0 , (6.3)

where we notice that the integral of |ϕ(x)| is finite because |ϕ(x)| is contuous and decays
rapidly at infinity, and ∥un − u∥∞ → 0 by hypothesis of uniform convergence.

2. Let un be a sequence of function which converges to u pointwise (i.e. un(x) → u(x) for every
x). If the sequence is dominated by a positive function w, i.e. |un(x)| ≤ w(x) for every n

and x, and w satifies the condition (3.1), then one can use Lebesgue’s theorem of dominated
convergence to show that un → u weakly.

3. Let un be a sequence of integrable functions which convergest to u in the sense of L1. This
means that∫ ∞

∞
dx |un(x)− u(x)| → 0 . (6.4)

Then un → u weakly. This can be easily shown as follows

|⟨un, ϕ⟩ − ⟨u, ϕ⟩| =
∣∣∣∣∫ ∞

−∞
dx [un(x)− u(x)]ϕ(x)

∣∣∣∣
≤

∫ ∞

−∞
dx |(x)− u(x)| |ϕ(x)|

≤ ∥ϕ∥∞
∫ ∞

−∞
dx |un(x)− u(x)| → 0 , (6.5)

where we have used the fact that every Schwartz function is bounded.

These are all examples that involve only regular distributions (i.e. proper functions). However the
game becomes more interesting when we consider distributions that are not proper functions. Let
us discuss a classical example.

The function

uσ(x) =
e−

x2

2σ

√
2πσ

(6.6)

is a regular distribution, i.e. it satisfies condition (3.1), for every σ > 0. uσ converges to δ0 in S ′,
in the σ → 0+ limit.

Let us prove the convergence. For every test function ϕ, we have

lim
σ→0+

⟨uσ, ϕ⟩ = lim
σ→0+

∫ ∞

−∞
dx

e−
x2

2σ

√
2πσ

ϕ(x) = lim
σ→0+

∫ ∞

−∞
dx

e−
x2

2

√
2π

ϕ(xσ1/2) , (6.7)
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where we have used the change of variables x → xσ1/2. Let us assume for a moment that we can
exchange the limit with the integral, then

lim
σ→0+

⟨uσ, ϕ⟩ =
∫ ∞

−∞
dx

e−
x2

2

√
2π

lim
σ→0+

ϕ(xσ1/2) = ϕ(0)

∫ ∞

−∞
dx

e−
x2

2

√
2π

= ϕ(0) = ⟨δ0, ϕ⟩ . (6.8)

In fact the limit and integral can be exchanged thanks to Lebesgue’s dominated convergence
theorem, if one notices that∣∣∣∣∣e−

x2

2

√
2π

ϕ(xσ1/2)

∣∣∣∣∣ ≤ e−
x2

2

√
2π

∥ϕ∥∞ , (6.9)

and the dominating function is finite and integrable. ■

This simple exercise describes a way to approximate (in the sense of the weak limit) the delta
function with a sequence or one-parameter family of regular distribution, or equivalently proper
functions. This is very useful because the action of regular distributions is given by an integral
of (proper) functions, which can be studied and undertood with stantard mathematical analysis
tools. The above example motivates the following definition.

A sequence un of functions satisfying the condition (3.1) is said to be a regularization of the
distribution T if un converges weakly to T . Analogously, a one-parameter family uϵ of functions
satisfying the condition (3.1) is said to be a regularization of the distribution T if uϵ converges
weakly to T in the ϵ → 0+ limit.

The Gaussian function discussed in the above example is not the only regularization of the delta
function. Other regularizations (with ϵ → 0+ or n → ∞) of δ0 are for instance

ϵ

π(x2 + ϵ2)
,

1

ϵ
χ[0,ϵ](x) ,

1

2ϵ
χ[−ϵ,ϵ](x) ,

sin(nπx)

πx
. (6.10)

One of the most interesting (and nontrivial) results in distribution theory is that for every distri-
bution there exists a regularization, i.e. for every distribution T it is always possible to find a
sequence of regular distributions un which converges weakly to T . Once again, weak convergence
means that, for every test function ϕ,

⟨T, ϕ⟩ = lim
n→∞

∫ ∞

−∞
dxun(x)ϕ(x) . (6.11)

In a sense, this fact motivates the physicist notation

⟨T, ϕ⟩ =
∫ ∞

−∞
dxT (x)ϕ(x) (sloppy physicist notation) . (6.12)

Once again, this is only notation since T is not a function and the integral here is not really an
integral in the mathematical sense.

7 Derivatives of distributions

Given a distribution T we want to define the derivative of T , which we will denote by T ′ or DT .
The minimal requirement that we want to fulfil, is that when T is a regular distribution associated
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to a differentiable bounded function u, i.e. T = Tu, then the derivative of Tu should be the regular
distribution associated to u′, i.e. we want that DTu = Tu′ . Now observe that

⟨Tu′ , ϕ⟩ =
∫ ∞

−∞
dxu′(x)ϕ(x) = −

∫ ∞

−∞
dxu(x)ϕ′(x) = −⟨Tu, ϕ

′⟩ . (7.1)

We can use integration by parts here because both functions u and ϕ are differentiable, and the
boundary term vanish beacuse ϕ decays rapidly at infinity. Therefore we define the derivative of
a general distribution T by analogy as

⟨T ′, ϕ⟩ = −⟨T, ϕ′⟩ , (7.2)

or, which is the same with different notation,

T ′(ϕ) = −T (ϕ′) . (7.3)

We should show that this definition makes sense, i.e. we should show that DT defined in this way
is a distribution. First we notice that the right-hand side makes sense for any test function ϕ,
because the derivative of a Schwartz function is still a Schwartz function (this is not completely
obvious). Linearity of DT is a consequence of the linearity of T and of the derivative of functions.
Finally continuity follows from the observation that, if ϕn → 0 in S then also ϕ′

n → 0 in S, as
one can easily prove from the definition of convergence in the set of test functions (sort out the
details!). In this argument, we have assumed nothing special about T . In fact the derivative T ′ is
defined (as a distribution) for every distribution T . In particular it follows that every distribution
is infinitely differentiable and

⟨DkT, ϕ⟩ = (−1)k⟨T, ϕ(k)⟩ . (7.4)

In particular, every function u which satisfies the condition (3.1) (with no regularity assumption)
is infinitely differentiable in the sense of distribution.

As an example let us prove that θ′(x) = δ(x) where the derivative is taken in the sense of distri-
butions. This follows from the chain of equalities

⟨Dθ, ϕ⟩ = −⟨θ, ϕ′⟩ = −
∫ ∞

−∞
dx θ(x) ϕ′(x) = −

∫ ∞

0

dxϕ′(x) = ϕ(0) = ⟨δ0, ϕ⟩ . (7.5)

where we have used the definition of derivative of distribution in the first equality, the definition
of regular distributions in the second equality, the definition of θ(x) in the third equality, the
fundamental theorem of algebra in the fourth equality (with the fact that ϕ is differentiable), and
the definition of the distribution δ0 in the last equality.

We point out two important results of distribution theory.

1. The derivative is a continuous operator on the space of distributions, i.e. if Tn → T in S ′

then DTn → DT in S ′. In other words, the derivative in the distributional sense can always
be exchanged with the weak limit. A consequence of this fact is that, if un is a regularization
for T and un are differentiable functions, then u′

n is a regularization for T ′.

2. For every distribution T , one can find a continuous function u which satisfies condition (3.1),
such that T = Dku in the distributional sense for some integer k.

8 Fourth example: derivatives of delta function

The derivatives of delta functions have the following simple action on test functions

⟨δ(k)x0
, ϕ⟩ = (−1)k⟨δx0

, ϕ(k)⟩ = (−1)kϕ(k)(x0) . (8.1)

8



9 Product of distributions

In general the product of two distribution is not defined. Let us see why this is the case with
an example. For instance, one may want to give meaning to the expression δ(x)θ(x). A possible
strategy is to consider a regularization un for the delta function. In this case un(x)θ(x) makes sense
as a function. One may want to define δ(x)θ(x) as the weak limit of un(x)θ(x) for n → ∞. This
definition is meaningful only if the limit does not depend on the chosen regularization. Now, we
can see explicitly that this is not the case. For instance, if we choose the following regularizations
(in the ϵ → 0+ limit) for the delta function

1

2ϵ
χ[−ϵ,ϵ](x) ,

1

ϵ
χ[0,ϵ](x) ,

1

ϵ
χ[−ϵ,0](x) , (9.1)

one gets different weak limits:

lim
ϵ→0+

1

2ϵ
χ[−ϵ,ϵ](x)θ(x) =

1

2
δ(x) , (9.2)

lim
ϵ→0+

1

ϵ
χ[0,ϵ](x)θ(x) = δ(x) , (9.3)

lim
ϵ→0+

1

ϵ
χ[−ϵ,0](x)θ(x) = 0 . (9.4)

These results can be easily proven as follows

lim
ϵ→0+

〈
1

2ϵ
χ[−ϵ,ϵ]θ, ϕ

〉
= lim

ϵ→0+

∫ ∞

−∞
dx

1

2ϵ
χ[−ϵ,ϵ](x)θ(x)ϕ(x)

= lim
ϵ→0+

1

2ϵ

∫ ϵ

0

dx ϕ(x) =
1

2
ϕ(0) =

1

2
⟨δ0, ϕ⟩ , (9.5)

lim
ϵ→0+

〈
1

ϵ
χ[0,ϵ]θ, ϕ

〉
= lim

ϵ→0+

∫ ∞

−∞
dx

1

ϵ
χ[0,ϵ](x)θ(x)ϕ(x)

= lim
ϵ→0+

1

ϵ

∫ ϵ

0

dx ϕ(x) = ϕ(0) = ⟨δ0, ϕ⟩ , (9.6)

lim
ϵ→0+

〈
1

ϵ
χ[−ϵ,0]θ, ϕ

〉
= lim

ϵ→0+

∫ ∞

−∞
dx

1

ϵ
χ[−ϵ,0](x)θ(x)ϕ(x) = 0 , (9.7)

for a general test function ϕ.

The product of two distributions S and T can be meaningfully defined via regularization, only if
it does not depend on the regularization. We will say that the product ST exists, if however we
choose a regularization un for S and a regularization vn for T , the sequence unvn converges in S ′,
and the limit does not depend on the chosen regularizations. The following results hold (which we
will give without proof):

1. For any distribution T and Schwartz function f , the product fT exists in S ′ and satisfies

⟨fT, ϕ⟩ = ⟨T, fϕ⟩ . (9.8)

2. Given a smooth function f with the property that f and all its derivatives are either bounded
or divergent at most as polynomials at infinity, for any distribution T the product fT exists
in S ′ and satisfies

⟨fT, ϕ⟩ = ⟨T, fϕ⟩ . (9.9)
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3. Given a function f with the only property that f is continuous in x0, then the product fδx0

exists in S ′ and

⟨fδx0
, ϕ⟩ = f(x0)ϕ(x0) . (9.10)

4. Given a function f with the property that f is k times differentiable in a neighbourhood of
x0, and its k-th derivative is continuous in x0, then the product fδ(k)x0 exists in S ′ and satisfies

⟨fδ(k)x0
, ϕ⟩ = −⟨f ′δ(k−1), ϕ⟩ − ⟨fδ(k−1)

x0
, ϕ′⟩ . (9.11)

This formula allow to calculate fδ
(k)
x0 recursively.

5. If f is differentiable in zero, then the product f(x)P/x exists in S ′, and satisfies

⟨f(x)P
x
, ϕ⟩ =

∫ ∞

0

dx
f(x)ϕ(x)− f(−x)ϕ(−x)

x
. (9.12)

Compare this with eq. (5.3).

10 Selected problems

Problem 1. Calculate ⟨T, ϕ⟩ as explicitly as possible, for any choice of the distribution

T = δx0
, δ′x0

,
P
x

, x2 , (10.1)

and of the test function

ϕ(x) = e−x2

, xe−x2

, e−x2+ix . (10.2)

All these integrals can be calculated in terms of elementary functions, except one.

Problem 2. Prove that
x

x2 + ϵ2
(10.3)

is a regularization of P/x (in the ϵ → 0+ limit).

Problem 3. Calculate the first, second and third derivative (in the sense of distributions) of |x|.

Problem 4. Let f(x) be a continuous and differentiable function for every x except in x = 0,
where it has a jump discontinuity. Let us assume also that f and f ′ (where it exists) are bounded.
Show that f defines a regular distribution. Express the derivative of f in the sense of distribution
in terms of the derivative of f in the sense of functions and of the jump at the discontinuity.

Problem 5. Prove that log |x| is a regular distribution, and

D log |x| = P
x

, (10.4)

where the derivative is taken in the sense of distributions.

Problem 6. Find an explicit expression for

⟨DP
x
, ϕ⟩ (10.5)

which does not involve limits.
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Problem 7. Prove that

lim
ϵ→0+

1

x+ iϵ
=

P
x
− iπδ(x) , (10.6)

where the limit has to be understood in the weak sense, i.e. in S ′. What is the following limit?

lim
ϵ→0+

1

x− iϵ
. (10.7)

Problem 8. Given some fixed x0, show that every Schwartz function ϕ can be written as

ϕ(x) = ke−(x−x0)
2

+ (x− x0)ϕ1(x) , (10.8)

where k is a constant and ϕ1 is a Schwartz function (both k and ϕ1 depend on ϕ). Find an explicit
formula for k. Use this fact to show that, if T is a distribution that satisfies (x − x0)T = 0, then
a constant α exists such that T = αδx0

.

Problem 9. Generalize the argument of the previous problem to show that, if (x − x0)
2T = 0,

then two constant α0, α1 exist such that T = α0δx0
+ α1δ

′
x0

.

Problem 10. Show that every Schwartz function ϕ can be written as

ϕ(x) = ke−x2

+ ϕ′
1(x) , (10.9)

where k is a constant and ϕ1 is a Schwartz function (both k and ϕ1 depend on ϕ). Find an explicit
formula for k. Use this fact to show that, if T is a distribution that satisfies T ′ = 0, then a constant
α exists such that T = α.

Problem 11. Show that x× P/x = 1 (where the product has to be interpreted as multiplication
of distributions).

Problem 12. Use the results of problems 8 and 11 to write the most general distribution T that
satisfies xT = 1.

Problem 13. Find the most general solution to the equation

T ′ = δx0 (10.10)

in distribution space. For a rigorous proof, you will need to use the result of problem 10.

Problem 14. Let f be a function with continuous derivative, which diverges for x → ±∞, and
with the property that infx f

′(x) > 0. Show that, for any test function ϕ, the following limit

lim
σ→0+

∫ ∞

−∞
dx

e−
[f(x)]2

2σ

√
2πσ

ϕ(x) (10.11)

exists finite, and defines a distribution which is usually denoted by δ(f(x)). Write an explicit
expression for this distribution. Some of the assumptions can be relaxed, which ones?
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