Matthew Black Haag-Ruelle Scattering Tutorials June 09, 2025

’ Lecture 1: Quantum free scalar field theory ‘

1.1. Starting from the commutation relations for the ladder operators, show that [¢(x), ¢(y)] =0
if (x — y) is space-like. This is the so-called microcausality property of the free scalar field.

Solution: Starting with the definition of the quantum scalar field,

o0) = | Gy Lo PO o)l ] 0

and the commutation relations,
[a(p), a(q)'] = 2E(p)(27)*6® (p — q), (2)
[a(p), a(q)] = [a(p)', a(9)'] = 0, (3)

we can write the commutator of the scalar field as

d®p d*q
ot0)-00) = [ Grimpmr | Erasa

{ [a —iE(p)zoti ; 0Ty | a(p)e—iE(p)xo+ip:ca(q)TeiE(q)yo—iqy

+ a(p)felP@ro—ivr g (@)~ iF@yotiay 4 W] (4)

_ [a(q)e—iE(Q)yoHauw(we HHDYToT DT + a(q)e—iE(q)yo+iqya(p)TeiE(p)yo—ipr

+ a(q)Te!P@voiayg(p)e=iBP)rotipe | W] }

- | b
(2m)*2E(p) J (27)°2E(q)

{[a(p), a(q)T]efiE(p)woJripxeiE(q)yofiqy _ [a(q), a(p)T]eiE(p)woipxeiE(q)yo+iqy} (5)

— d3p d3q )3 Dy _ o)
—/ (2m)32E(p) / GmaE(g) ) 2E @I (P —a)

{ e—iE(p)wo+ipsc€iE(Q)yo—iqy _ eiE(p)wo—ipsce—iE(q)yoJriqy} (6)
[6(), p(y)] / Tp [emP @) — et av)] (7)
= — | € —
e (27)32E(p)

This is a Lorentz-invariant object, so to check if it vanishes for all space-like separations, we
can evaluate it at one space-like vector; all are equivalent. Choose a frame where 2° = y° —
x—y=2z=(0,2). In this frame, you can see that the integral will vanish.

1.2. Prove that the components of the four-momentum operator commute with each other. |

Solution: The four-momentum operator is

Pr = / d*x T (g, ), (8)
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where T is the energy-momentum tensor,
v v v 1 1 242 v v v v
T =8"90"¢ — g™ | 50,00°¢ — gm°¢" | —eog"’ = 0"90"¢ — ¢""L(z) — c0og™,  (9)
for some arbitary constant €y and the Lagrangian density
1 1 5.5

We want to show that
[P*, P"] = 0. (11)

First, recall the canonical momentum

m(x) = og(x) (12)

and its equal-time commutation relations with ¢
[o(t, ), 7(t,y)] = 169 (z — y), (13)
[(t, x), 7 (t,y)] = 0. (14)

Now we expand the commutation of the four-momentum operator:

[PH, P = [/d%TO“(:vo,w)’/d?’yTo”(yo,y)] (15)

( o)
< (7o) - 5 (3r0002000) ~ 5 *)) + se” ) |
= [(rro) - 5 (501000°00) ~ 326 ) + sur
< (7@0%60) = o (30,000%610) ~ 32e(w)) + e ) |}
(10
where the ¢ term cancels trivially.
PP = [y {00000, ()0 o) + LT
 r(2)00(0), g L) + ™ L), 7(0) 0] (17)

where we have now compressed the energy-momentum tensor contribution of the Lagrangian
density, and since the Lagrangian density trivially commutes with itself we have already can-
celled this term. Let’s look at separate cases of u, v:

» Case 1, p,v —1i,7 #0:

P, PY] = / Bz &y [ () d(x), 7 ()P b(y)] (18)
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since the metric tensor will remove the Lagrangian in this case. Then we can use the
Leibniz rule,

[AB,CD] = A[B,C]|D + AC[B, D] + [A,C]DB + C[A, D]B, (19)
to expand as
PP = [aeay {w<x>[6f¢<x>, ()} ((y) + m(x)(y) [T
[T 9()0'0l0) + (o), Polu)}oVof) | (20)

where we see that two commutators are simply zero. The remaining commutators are
found using the identity

'), m(y)] = 06 (@ — y) (21)
leading to

[P, P = /d?’w d’y {iﬂ(x)é‘i(;(S) (@ —y)&(y) — in(y) 6@ (2 — yﬁ%(ﬁ)}- (22)
The integral of a derivative of a delta function with some test function is given by

[ #9959 - fw) = -0'f(@ (23)
and so the commutator becomes

[P, P7| = / d*x )07 )0 0'p(x) ¢ = 0. (24)

Case 2, 1 = 0,v = i: When p = 0, P° becomes the Hamiltonian:

P? = / B {8%8% — (%apw% — %m%b?) — eo} (25)
- / P {a%a% - %a%a% + %aiabaw + %m%z — 60} (26)
= /d3x {%W2 + %(VWQ + %m2¢2 - 60} =H (27)

So then the commutator is
. 1 1 1 ;
P = | [ e jwor s gt -l [ Evmosn)| o9

Let’s take this term by term:

w Term 1:
57T 0)00)| = ATV 6 + 7)) r(0). (0]
+ 2 T () + () (), Folw)ln(z)  (29)
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Now perform the integral:

5 [ oy {sOr ), 00] + 7)) Dol |
— =5 [ oy [rla)n(y) + 7)) 05l ~ y) (30)
— 5 [ @adrap) =0 (31)
w Term 2:
5 (Vo) x| = ;5 [P0 0(e), 70)2'6(0)] (32)
= 3{ 2000 [P0t 7] 0610) + o)1) 2okrd"00T
# [0/000).7(0)] D)0 o) + 7(y) DT 00 | (33)
= iVo(x) - Vo (@ — y)0'o(y) (34)

Now integrating this result,
/ B dPyid’ ¢(z) - P63 (x — y)d'o(y) = —i / P& (P p(x)0'¢(x)) =0 (35)
w Term 3:
5 @) (1)0'ol)
S0 [0(2), 7(w)] o) + 1m2¢<x>w<y>w

g [9(e). (0] 96(0) (0(0) + Jmn() ek SoTote) | (36)
— im?o(@)0 ()6 (@ — y) 37)

Now integrating,
[ e dyinto@oow)Oe - y) =i [ Ezo@dom =0 (@)

w Term 4 trivally commutes

1.3. Prove that the operators P, are mutually orthogonal projectors on the n-particle sector of
the Fock space.

Solution: We want to show that

P2 =P, (39)
P! =P, (40)
P,P,, = 0 for n # m. (41)
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o Let |¢) € F, with

1 2

P2 =P,P, = (m/dﬂn |p1,...,pn><p1,...,pn|) (42)
1

— (n'>2/dHndHle,...,pn><p1,...,pn\p’l,...,p;)(pll,...,p;]. (43)

Using the orthonormality of the n-particle states, the inner product gives us

ro-plhpl) = n [T 2 28005 (b~ ) (44)
k=1
Then,
- ’ TT2n)? (3) N
P, = ()2 dIL, dIT, [p1, ... pa) |n! T [(27)* 2E(px) 6®) (P — p}) | (0 pal  (45)
‘ k=1
1
:ﬁ dHn |p1,,pn><p1,7pn| :]P)n (46)

e Take the Hermitian conjugate of the projector:

1 [
]P)jq,: (E/dnn |p17"'7pn><p1>--'7pn|) = E/dH” |p17"'7pn><p17"'7pn| :Pn'
(47)

e Knowing that the n-particle momentum eigenstates |p1, ..., p,) are normalised, then

1 1

1

:n‘m'/d]:[nd]:[mlplﬂ"’7pn><p1""7pn|q17’"’qm><q17"'7qm| (49)

Since the Fock space is an orthogonal sum,
F=Pn", (50)
n=0

the Hilbert spaces H*® of k-particle states are orthogonal to one another. Therefore the
inner product in P,P,, must be 0:

<p1a"'7pn|q17"'7qm>:07 (51)

which therefore makes the whole expression 0.

1.4. Prove that the state |p1,ps,...,pn) are eigenstates of the four-momentum and calculate
their eigenvalues.

Solution: An n-particle state is

p1, -5 pn) = al(p1) - al (pn)|Q) (52)
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and the four-momentum operator can be written

d3p
P = / Wp CLT(P)@(P)- (53)
It is trivial to show that
[P*,a"(p)] = p"al (p), (54)

and then we can see that acting on a single creation operator can be written as
Ptal(pr) = al (p1)P* + pla (p). (55)
This relation can be applied recursively to a n-particle state, yielding

P {pi,...,pa) = P*al(py) - al(pa)|2) (56)
= (Zpi-‘) P15+ Pn)s (57)

since P*|0) = 0.

1.5. Prove that

{p1 +p2 s.t. p1, p2 € My} = {p c R*s.t. p? > (2m)? and p, > 0} ) (58)

Solution: Reminder:
My = {p e R*s.t. p?> = m? and py > 0} ) (59)

Let p € R* with p* > (2m)? and py > 0. We need to find p;, py € M; such that p = p; + ps.
Choose the rest frame of p: define a Lorentz frame where p = (po,0), and then p; = (£, q)
and p; = (&, —q such that p = p; + ps. Then

= (p+p2)’ = {(\/W +p%>0) + (\/m2 +p§,0) }2 (60)

2
= ( m? + q2,0> = (2m)* +4¢*, ¢ >0. (61)

1.6. Prove that the following operator
L — / & [T (z) — T (2)] (62)

does not depend on x° and that it generates Lorentz transformations on the field ¢(x). In
particular, for any real matrix w,,, satisfying w,, — w,,, show that:

e 2m I g () e Y = g(A ) (63)

where A = ¢¥ is a Lorentz transformation.
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0

Solution: To show that L*” does not depend on x”, we want
g0 = g (64)
dx?
= /d3x (27 00T () — 20T (z)] . (65)
The energy-momentum tensor satisfies local conservation d,T* = 0, in particular
0T = —0,T™, (66)
and thus p
ﬂLHV<xO) = —/dgilf [x”@iTi’“‘ — x“&-TW} . (67)
x

Now we perform IBP on each term:

/d% 0T = [ BrofT™) — /d% T = —/d3x ", (68)
where we can set the surface term to 0. Substituting back in, we find

d%LW(xO) - / &z T — / Bz T = 0. (69)

Since the energy-momentum tensor is symmetric, i.e. T*” = T"*  the two terms cancel.

To show that L generates Lorentz transformations of a field ¢(x), we aim to write

S(x) = %wﬂy[LﬂV, ()] = —2,0,0(x), (70)

which is the infinitesimal Lorentz transformation of ¢(z).

e An infinitesimal Lorentz transformation acts on spacetime coordinates as

ot =t = ah 4wk g (71)
where w*” = —w"* are the infinitesimal antisymmetric paramters of the Lorentz group.
Under this transformation, a scalar field ¢(x) transforms as

dla) = ¢/(z) = ¢(A™'2) = ¢ — wr) = ¢(z) — W"'1,0,0(x) (72)
So the variation in ¢ is
dp(z) = ¢'(z) — p(z) = —wx,0,0(x) (73)

e We can write the commutator identity

which tells us that T%(y) generates translations in the z* direction.

e Now we want to commute the commutator of L*” with ¢:
2 ow] = [Eoa (o) - [0 @)

= —i / d’y 8% (x —y) [270"¢(x) — 20" ¢(x)] (76)
= —i (2°0") — 2"0") ¢(z (77)
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e Now we can recover the transformation:

i i . v v
56(2) = S [, 6(2)] = S [ =1 (270" — 290") 6(c)] (78)
= %wwj ("0 — 210") ¢(z) = —wx,0,0(x) (79)
We want to calculate v _
e~ 2w L g () eawm L (80)
We can use the BCH identity
ABe=d — B+ (A, B] + %[A, A B]+.... (81)

i

where in our case A = —5w,, L*". So

LA A 6@ + (82)

e!d(@)e = o) + [A,6(a)] + 5

but this is just the Taylor expansion of ¢(A~'x) since

dp(x) = —w"x,0,0(x) (83)

is the infinitesimal shift under x — 2/ = A~ 1x.
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