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Lecture 2: Axiomatic framework and QCD

2.1. Prove that the smeared fields transform under translation in the same way as local fields,
i.e.

ϕf (x+ a) = eiPaϕf (x)e−iPa. (1)

What happens under Lorentz transformation?

Solution: The smeared field at x is defined

ϕf (x) =

∫
d4y f(x− y)ϕ(y). (2)

So the smeared field at x+ a can be written

ϕf (x+ a) =

∫
d4y f(x+ a− y)ϕ(y) (3)

y′ = y − a =⇒ =

∫
d4y′ f(x− y′)ϕ(y′ + a). (4)

Now consider the translation:

eiPaϕf (x)e−iPa = eiPa

(∫
d4y f(x− y)ϕ(y)

)
e−iPa (5)

=

∫
d4y f(x− y)eiPaϕ(y)e−iPa (6)

=

∫
d4y f(x− y)ϕ(y + a) (7)

= ϕf (x+ a). (8)

Recalling that the Lorentz translation of the regular field is

U(Λ, a)ϕ(x)U−1(Λ, a) = R(Λ−1)ϕ(Λx+ a), (9)

we consider the Lorentz transformation of the smeared field:

U(Λ, a)ϕf (x)U−1(Λ, a) = U(Λ, a)

(∫
d4y f(x− y)ϕ(y)

)
U−1(Λ, a) (10)

=

∫
d4y f(x− y)U(Λ, a)ϕ(y)U−1(Λ, a) (11)

=

∫
d4y f(x− y)R(Λ−1)ϕ(Λy + a) (12)

= R(Λ−1)

∫
d4y f(x− y)ϕ(Λy + a) (13)

y′ = Λy =⇒ = R(Λ−1)

∫
d4y′f(x− Λ−1y′)ϕ(y′) (14)

= R(Λ−1)

∫
d4y′fΛ(Λx− y′)ϕ(y′) (15)

= R(Λ−1)ϕfΛ(Λx), (16)

where we have transformed the test function f → fΛ(x) = f(Λ−1x). The smeared field
transforms like a field at Λx with a transformed smearing profile.
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2.2. Define the Fourier transform of a field operator ϕ(x) as

ϕ̃(p) =

∫
d4x eipxϕ(x). (17)

Let |p⟩ be an eigenstate of the four-momentum operator Pµ with eigenvalue pµ. Prove that
ϕ̃(q)|p⟩ and ϕ̃†(q)|p⟩ are eigenstates of Pµ and calculate the corresponding eigenvalues. Argue
that ϕ̃†(q) and ϕ̃(q) act as creation and annihilation operators for the four momentum.

Solution: The momentum operator generates translations as

[P µ, ϕ(x)] = −i∂µϕ(x), (18)

which implies a commutator also exists for the Fourier-transformed field:

[P µ, ϕ̃(q)] =

∫
d4x eiqx[P µ, ϕ(x)] = −i

∫
d4x eiqx∂µϕ(x). (19)

This can be evaluated using IBP:

[P µ, ϕ̃(q)] = −i
(
−
∫
d4x (∂µeiqx)ϕ(x)

)
(20)

= i

∫
d4xiqµeiqxϕ(x) (21)

= −qµϕ̃(q). (22)

So then we can consider

P µ
(
ϕ̃(q)|p⟩

)
=

(
P µϕ̃(q)

)
|p⟩ (23)

=
(
ϕ̃(q)P µ + [P µ, ϕ̃(q)]

)
|p⟩ (24)

= ϕ̃(q)P µ|p⟩+ [P µ, ϕ̃(q)]|p⟩ (25)

= pµϕ̃(q)|p⟩ − qµϕ̃(q)|p⟩ (26)

= (pµ − qµ) ϕ̃(q)|p⟩. (27)

Similarly, with the commutator

[P µ, ϕ†(x)] = i∂µϕ
†(x) =⇒ [P µ, ϕ̃†(q)] = qµϕ̃†(q). (28)

Then,

P µ
(
ϕ̃†(q)|p⟩

)
= (pµ + qµ)ϕ̃†|p⟩. (29)

So ϕ̃†(q) and ϕ̃(q) act as creation and annihilation operators on the four-momentum by injecting
or removing momentum from the state.

2.3. Consider two observables A and B which, for simplicity, are assumed to have only discrete
non-degenerate eigenvalues. Denote by an and bm the eigenvalues of A and B, respectively,
and by |an⟩ and |bm⟩ the corresponding eigenstates. Consider a generic normalised state
|ψ⟩. We imagine two different measurement protocols:

1. We measure A on the state |ψ⟩ first, and then B;
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2. We measure B on the state |ψ⟩ first, and then A.

Recall that the state changes as a consequence of the measurement procedure. Let pn,m
(resp. qn,m) be the probability of obtaining an as the result of the measurement of A and bm
as the result of the measurement of B in the first (resp. second) protocol. Write a formula
for pn,m and qn,m in terms of the eigenstates |an⟩ and |bm⟩ and the state |ψ⟩. Show that the
order in which the observables are measured does not matter (for any state |ψ⟩) if and only
if the two observables commute.

Solution: Let’s look at the two protocols separately:

1. First, measure A. The probability of outcome an is

P (an) = |⟨an|ψ⟩|2, (30)

and the post-measurement state collapses to |an⟩. Now, measure B on |an⟩. The proba-
bility of outcome bm is

P (bm|an) = |⟨bm|an⟩|2. (31)

The total joint probability is then

pn,m = P (an)P (bm|an) = |⟨an|ψ⟩|2 · |⟨bm|an⟩|2. (32)

2. First, measure B. The probability of outcome bm is

P (bm) = |⟨bm|ψ⟩|2, (33)

and the post-measurement state collapses to |bm⟩. Now, measure A on |bm⟩. The prob-
ability of outcome an is

P (an|bm) = |⟨an|bm⟩|2. (34)

The total joint probability is then

qn,m = P (bm)P (an|bm) = |⟨bm|ψ⟩|2 · |⟨an|bm⟩|2. (35)

Now let’s show that these are equivalent if A and B commute. If [A,B] = 0, then there exists
a common orthonormal basis {|ck⟩} such that

A|ck⟩ = ak|ck⟩, B|ck⟩ = bk|ck⟩ =⇒ |an⟩ = |bm⟩ if an = am etc. (36)

Therefore, ⟨an|bm⟩ = δnm and then the probabilities are

pn,m = |⟨an|ψ⟩|2 · δn,m, (37)

qn,m = |⟨bn|ψ⟩|2 · δn,m = |⟨an|ψ⟩|2 · δn,m. (38)

So pn,m = qn,m if [A,B] = 0.

Now the only if: Suppose pn,m = qn,m for all normalised states |ψ⟩, then

|⟨an|ψ⟩|2 · |⟨bm|an⟩|2 = |⟨bm|ψ⟩|2 · |⟨an|bm⟩|2. (39)

Choose for example |ψ⟩ = |ak⟩, then find

δnk · |⟨bm|an⟩|2 = |⟨bm|ak⟩| · |⟨an|bm⟩|2. (40)

If we assume |⟨bm|ak⟩|2 ̸= 0, then we find

δnk = |⟨an|bm⟩|2. (41)

Or otherwise,
|⟨an|bm⟩|2 = δn,f(m), (42)

for some unique mapping f(m) → n.
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2.4. In the free scalar case, prove the formulae:

⟨Ω|T{ϕ(x)ϕ(0)}|Ω⟩ = lim
ϵ→0+

∫
d4p

(2π)4
ie−ip·x

p2 −m2 + iϵ
, (43)

⟨Ω|ϕ(x)ϕ(0)|Ω⟩ =
∫

d4p

(2π)4
θ(p0) 2π δ(p

2 −m2)e−ip·x. (44)

Solution:

• First, we will compute eq. (44). The scalar field operator has the expansion

ϕ(x) =

∫
d3p

(2π)32E(p)

[
a(p)e−ip·x + a†(p)eip·x

]
. (45)

We insert this into eq. (44), finding

⟨Ω|ϕ(x)ϕ(0)|Ω⟩ =
∫

d3p

(2π)32E(p)

d3q

(2π)3E(q)
⟨Ω|

[
a(p)e−ip·x + a†(p)eip·x

] [
a(q) + a†(q)

]
|Ω⟩

(46)

The only non-zero contribution comes from

⟨Ω|a(p)a†(q)|Ω⟩ = 2E(p)(2π)3δ(3)(p− q), (47)

leading to

⟨Ω|ϕ(x)ϕ(0)|Ω⟩ =
∫

d3p

(2π)32E(p)
e−ip·x. (48)

This is the standard result of the Wightman function in terms of a 3-momentum integral,
but now we want to express this as a 4-momentum integral. We require:

➡ a delta function δ(p2 −m2) to enforce the mass-shell condition p0 = ±
√
p2 +m2;

➡ a θ(p0) to pick out the positive frequency p0 > 0;

➡ the Jacobian of the delta function integral yields∫
d4p δ(p2 −m2)θ(p0)f(p) =

∫
d3p

2E(p)
f(E(p), p). (49)

So now we can write the 4-momentum integral as

⟨Ω|ϕ(x)ϕ(0)|Ω⟩ =
∫

d4p

(2π)4
θ(p0) 2π δ(p

2 −m2)e−ip·x. (50)

• Now for eq. (43), we want to compute the Feynman propagator in position space,

i∆F (x) = ⟨Ω|T{ϕ(x)ϕ(0)}|Ω⟩. (51)

The time-ordered product T{ϕ(x)ϕ(0)} is defined

T{ϕ(x)ϕ(0)} =

{
ϕ(x)ϕ(0), if x0 > 0,

ϕ(0)ϕ(x), if x0 < 0,
(52)
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so the VEV of this is

⟨Ω|T{ϕ(x)ϕ(0)}|Ω⟩ = θ(x0)⟨Ω|ϕ(x)ϕ(0)|Ω⟩+ θ(−x0)⟨Ω|ϕ(0)ϕ(x)|Ω⟩. (53)

We know from the 3-momentum Wightman function above that

⟨Ω|ϕ(x)ϕ(0)|Ω⟩ =
∫

d3p

(2π)32E(p)
e−ip·x, (54)

⟨Ω|ϕ(0)ϕ(x)|Ω⟩ =
∫

d3p

(2π)32E(p)
eip·x, (55)

and so the time-ordered expression is

⟨Ω|T{ϕ(x)ϕ(0)}|Ω⟩ =
∫

d3p

(2π)32E(p)

[
θ(x0)e

−ip·x + θ(−x0)eip·x
]
. (56)

Again, we want to rewrite this as a 4-momentum integral. If we consider the p0 integral
of eq. (43) explicitly, ∫

dp0
2π

e−ip0x0

(p0)2 − E(p)2 + iϵ
. (57)

This integral can be done via contour integration with poles at p0 = ±E(p) ∓ iϵ. By
closing the contour:

➡ If x0 > 0, we close in the lower half-plane and pick up p0 = E(p)− iϵ;

➡ If x0 < 0, we close in the upper half-plane and pick up p0 = −E(p) + iϵ.

The residues give∫
dp0
2π

e−ip0x0

(p0)2 − E(p)2 + iϵ
=

1

2E(p)

[
θ(x0)e

−iE(p)x0 + θ(−x0)eiE(p)x0
]

(58)

and then reincluding the 3-momentum integral, this will return us to eq. (56).
Thus, eq. (56) is equivalent to eq. (43).

2.5. In operatorial formalism and temporal gauge (A0 = 0), QCD can be described in terms of
the following fundamental fields in the Schrödinger picture:

➤ the gluon field Ak(x) =
∑

aA
a
k(x)T

a, where k = 1, 2, 3 is the spatial index, a =
1, . . . , 8 is the colour index, and T a are the generators the gauge group SU(3 with the
normalisation tr(T aT b) = 1

2
δab; for instance, one can choose T a = λa/2 where λa are

the Gell-Mann matrices;

➤ the chromoelectric field Ek(x) =
∑

aE
a
k(x)T

a, with the same conventions as for the
gluon field;

➤ the quark fields ψαif (x), where α = 1, 2, 3, 4 is the Dirac spinor index, i = 1, 2, 3 is the
colour index and f = u, d is the flavour index.

The fundamental fields satisfy canonical equal-time (anti-)commutation relations:

[Aa
j (x), E

b
k(y)] = iδjkδ

abδ(3)(x− y), (59)

{ψf (x), ψ
†
g(y)} = I12×12δfgδ

(3)(x− y). (60)
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Consider the operator

G(x) =
∑
a

Ga(x)λa, (61)

Ga(x) = DkE
a
k(x) +

∑
f

ψ†
f (x)T

aψf (x), (62)

and its smeared version

G(ω) = 2

∫
d3x tr[ω(x)G(x)], (63)

where ω(x) =
∑

a ω
a(x)T a is a test function which is smooth and vanish at infinity. Notice

that we smear here only in space, not in time.
Calculate the commutators of G(ω) with the fundamental fields Aa

k(x), E
a
k(x), and ψf (x).

Argue that G(x) can be interpreted as the generator of gauge transformations and that
physical states must satisfy the condition G(x)|Ψ⟩ = 0.

Solution: First, we will rewrite G(ω) by propagating ωa(x) through the expression for Ga(x):

G(ω) =

∫
d3x

{
−Ea

k(x)(Dkω(x))
a +

∑
f

ψ†
fω(x)ψf (x)

}
, (64)

where we have reordered the derivative on the gauge field part using IBP and vanishing bound-
ary terms.

➤ Commutator with Ab
j(y). Since Ab

j(y) commutes with the fermion fields ψ, we are only
concerned with the gauge field part of G(ω):

[G(ω), Ab
j(y)] = −

∫
d3x [Ea

k(x), A
b
j(y)] (Dkω(x))

a = iDjω
b(y), (65)

where we have used eq. (59). Note that this is exactly how the gauge field transform
under an infinitesimal gauge transformation, δwA

b
j = Djω

b.

➤ Commutator with Eb
j (y). Again, E

b
j (y) commutes with the fermion fields, and also with

itself, and so naively it would be 0. However, we should realise that Eb
j (x) does not

commute with Ac
i(y) and so we should expand the covariant derivative, (DkE

k)a =
∂kE

k,a + fabcAb
iE

i,c:

[G(ω), Ed
j (y)] =

∫
d3xωa(x)gfabc[Ab

i(x)E
i,c(x), Ed

j (y)] (66)

= i

∫
d3xωa(x)fabcδbdδijδ

(3)(x− y)Ei,c(x) (67)

= ifabcωa(y)Ej,c(y). (68)

This again represents an infinitesimal gauge transformation in the adjoint representation.

➤ Commutator with ψf (y). First we can recognise that the quark field fully commutes with
the gauge field part of G(ω), so we are left with

[G(ω), ψf (x)] =

∫
d3y ωa(y)[ψ†

g(y)T
aψg(y), ψf (x)] (69)
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. Using the identity

[ψ†
g(y)T

aψg(y), ψβ,f (x)] = −δfgT a
βγδ

(3)(x− y)ψγ,g(y), (70)

we find

[G(ω), ψβ,f (x)] = −
∫
d3y ωa(y)δfgT

a
βγδ

(3)(x− y)ψγ,g(y) (71)

= −ωa(x)λaβγψγ,f (x) (72)

= −ω(x)ψ(x). (73)

This is the infinitesimal gauge transformation of ψ(x) in the fundamental representation.

So we see that for all three cases, Ga(x) generates gauge transformation. However, gauge
transformations are not physical symmetries and therefore physical states must be invariant
under gauge transformations. In order for this to be true, then

G(x)|Ψ⟩ = 0, (74)

G(ω)|Ψ⟩ = 0. (75)

This is analagous to Gauss’ law in QED.

2.6. With the notation of the previous problem, the Hamiltonian of QCD in the temporal gauge
(A0 = 0) reads

H =

∫
d3x

{
g2trE2

k(x) +
1

2g2
trF 2

jk(x) +
∑
f

ψ̄f (−iγkDk −mf )ψf (x) + ϵ0

}
, (76)

with the following definitions:

Fjk = ∂jAk − ∂kAj + i[Aj, Ak], (77)

Dk = ∂k + iAk, (78)

ψ̄f (x) = ψ†
f (x)γ

0. (79)

The additive constant ϵ0 is chosen in such a way that the vacuum has zero energy.
Show that [G(x),H] = 0, i.e. the Hamiltonian is invariant under gauge transformations.

Solution: The Hamiltonian is constructed entirely from gauge-invariant quantities such as
trE2, trF 2, ψ̄ψ, and therefore any gauge transformation must leave H invariant by definition.

An alternative argument is using Heisenberg evolution. Physically, this means that Gauss’ law
is preserved in time. If |Ψ(t)⟩ satisfies Ga(x)|Ψ(t)⟩ = 0 at time t = 0, then

d

dt
Ga(x, t) =

i

ℏ
[H, Ga(x, t)] = 0 =⇒ Ga(x, t) = Ga(x, 0). (80)

So the constraint is consistent with Hamiltonian evolution, it doesn’t break from the dynamics.
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2.7. With the notation of the previous two problems, consider the operators

Qf =

∫
d3xψ†

f (x)ψf (x), (81)

Uf (α) = e−iαQf . (82)

a) Calculate the commutators of Qf with the fundamental fields Aa
k(x), E

a
k(x), ψg(x),

and ψ†
g(x).

b) Calculate

Uf (α)A
a
k(x)U

†
f (α), Uf (α)E

a
k(x)U

†
f (α), Uf (α)ψg(x)U

†
f (α), Uf (α)ψ

†
g(x)U

†
f (α).

c) If P is a generic product of the fundamental fields and their derivatives, relate [Qf , P ]
to the number of quark fields of flavour f appearing in the operator P . The operators
Qu and Qd are called up-quark number and down-quark number respectively.

d) Show that the Hamiltonian commutes with Qf . Notice that this implies that Uf (α) is
a symmetry of the theory and the corresponding generators Qf are conserved charges.
We say that the up-quark number and down-quark number are conserved in QCD.

e) Write the baryon-number and electric-charge operators in terms of Qu and Qd.

Solution:

a) The gluon Aa
k(x) and chromoelectric Ea

k(x) fields commute with the quark fields and
therefore commute with Qf :

[Qf , A
a
k(x)] = 0, (83)

[Qf , E
a
k(x)] = 0. (84)

With the anti-commutation relations of quark fields,

{ψf (x), ψg(y)} = 0, (85)

{ψ†
f (x), ψg(y)} = −δfgδ(3)(x− y), (86)

we now compute

[Qf , ψg(y)] =

∫
d3x

[
ψ†
f (x)ψf (x), ψg(y)

]
(87)

=

∫
d3x

{
ψ†
f (x)[ψf (x), ψg(y)] + [ψ†

f (x), ψg(y)]ψf (x)
}

(88)

= −
∫
d3x δfgδ

(3)(x− y)ψf (x) (89)

[Qf , ψg(y)] = −δfgψg(y), (90)

and similarly

[Qf , ψ
†
g(y)] = +δfgψ

†
g(y). (91)

b) Using the BCH formula, we can write

UfX U †
f = e−iαQfX eiαQf = e−iα[Qf ,·]X, X ∈ {Aa

k(x), E
a
k(x), ψg(x), ψ

†
g(x)}. (92)
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Since the gluon and chromoelectric fields commute with Qf , we can see that they are
left invariant under Uf :

Uf (α)A
a
k(x)U

†
f (α) = Aa

k(x), (93)

Uf (α)E
a
k(x)U

†
f (α) = Ea

k(x). (94)

With the results in eqs. (90) and (91), we can see that the quark fields ψg(x) and ψ
†
g(x)

will not be invariant under Uf :

Uf (α)ψg(x)U
†
f (α) = eiαδfgψg(x), (95)

Uf (α)ψ
†
g(x)U

†
f (α) = e−iαδfgψ†

g(x). (96)

c) We recall the Leibniz rule

[Qf , AB] = [Qf , A]B + A[Qf , B] (97)

which can be performed recursively so it is sufficient to know how Qf commutes with
elementary fields to know how it commutes with a generic product P . As well as the
commutators calculated above, we will need that derivatives commute with Qf , i.e.

[Qf , ∂µψf ] = ∂µ[Qf , ψf ] = −∂µψf . (98)

Let P be a product of fields and derivatives, so it contains nf factors of ψf and mf

factors of ψ†
f . Each ψf contributes −1 and each ψ†

f contributes +1 to the commutator,
and therefore

[Qf , P ] = (mf − nf )P. (99)

d) Recall the Hamiltonian defined in eq. (76). We can calculate [Qf ,H] term-by-term. The
gauge field terms clearly commute with Qf , i.e.

[Qf , E
2(x)] = 0, (100)

[Qf , F
2
jk(x)] = 0. (101)

The quark kinetic term commutes as

[Qf , ψ
†
gDjψg] = [Qf , ψ

†
g]Djψg + ψ†

gDj[Qf , ψg] = δfg
(
ψ†
gDjψg − ψ†

gDjψg

)
= 0. (102)

The quark mass term commutes as

[Qf , ψ
†
gmgψg] = [Qf , ψ

†
g]mgψg +mgψ

†
g[Qf , ψg] = δfg

(
ψ†
gmgψg − ψ†

gmgψg

)
= 0. (103)

Therefore,
[Qf ,H] = 0. (104)

e) Each (anti-)quark carries a baryon number (−)1
3
, so the total baryon number is

B =
1

3

∑
f

Qf . (105)

Up-type quarks have electric charge +2
3
and down-type quarks have electric charge −1

3
,

so the electric-charge operator is

Q =
2

3
Qu −

1

3
Qd. (106)
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