Matthew Black Haag-Ruelle Scattering Tutorials June 11, 2025

Lecture 3: One-particle states ‘

3.1. Prove

z(t) =x(0) + vt, (1)
Ax*(t) = Az?(0) + Dt + Av*t?, (2)
by using the definition of f;(x),
= dg—p ipx f — L —iE(p)t+ipz |
1) = [ G ) = [ G e T ), @

and the properties of the Fourier transform and calculate the coefficient D in terms of the
wavefunction f(p).

Solution:

a) Starting with
o(t) = [ Poalfi(a) @

we want to calculate the time derivative %x(t) and then integrate it to get the expression

for &(t). First, using the definition of f;(x), we can rewrite the position-space integral
in momentum space.

ot — [ o d3q d*p Si(p-a)e () f
0= [ [ = j <q>ft<p>] )

2E(q) (2m)*\/2E(p)

:/ (27r)3d3q2E(q) (27T)3d3Z;E(p)ft*(q)f {P) U dgmei(pq)m}' )

This inner z integral is a standard trick in Fourier analysis:

. 5
BrreP DT =i~ 56 (p— q). 7
[ e =) )

So the whole expression becomes

w(t) = [ G Vi) 0

Now apply the time derivative:

d d3p
=W = / (27)32E,

Recall that the momentum-space wavefunction evolves with time as

afgip) - (IVy) filp) + £ (P) iV (afé(tp))] Y

fi(p) = e 7@ fy(p). (10)
So the time derivatives of the wavefunction are
of, , . ofr , .
MB) i) o), P) () f: ) (1)
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Now plug these into the time derivative:

7o) = [ G [(E@) @) - (9,40) + /() 1V, E@) )] (12

d” 32E(p)
a d’p . : 22 . ;
- | G [FE@E @A)+ @)Y, EE) + Ew) <p>vpftézlo§ .
Notice that the first and third terms cancel each other. What’s left is then:
4ty = v Pv.E 14
G0 = | G )V, E() (1)
So what is V,E(p)?
E(p) = /[pP+m? = V,E(p) = % (15)
Substituting this in:
d o d’p ; 2 P
G0 = [ G o) s = o). (16)

[Note: of course, it can be sufficient simply to identify the velocity ©(¢) and integrate.]
Finally integrating, we get
z(t) = x(0) + vt. (17)

b) Starting from
a0 = [ dale - 2@l (19
we can expand this to see what must be quantified:
8) = [ Eralfi@) - 200) [ Peali@f +a? [@alf@P  09)
— (2, — 3(t)" (20)
We already have
Z(t) = x(0) + vt = x(t)* = x(0)* + 2tz (0)v + v°t?, (21)

so we need to calculate (z?);. In momentum space, the position operator is

r=iV, = x’=-V_, (22)
” ) d’p 2\
@0 = [ Gip P (23)
Applying the derivative to the wavefunction, we find
V,fi(p) = Yyl fi(p) = V, (7 E®" fo(p) (24)
= 01 | —it(V, E(p)) folp) + Vo(p)| (25)

V2, (p) = PP [ PV, Ep) folp) — 200V, E(p) - Vo o(p)

—H(V2E®D)) fo(p) +v;fo<p>} (26)
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Now insert this result into eq. (23):

@)t =- [ MTZ@JEW;@)@—Z’EW x | = (V,E(P)fo(p)

— 2itV,E(p) - Vo fo(p) — it(V2E(p)) fo(p) + Vifo(p)|  (27)

Let’s take this by powers of ¢:

» 1% term:
2 dgp £ 2 ¢ — (2
@0 > [ G P VEh®) = @0 (28)
» t! term:
2 9 d’p R ara
@)0) 2 <20t [ ol iV ¥, () (20)
» 12 term:
2 2 d’p ; 2 2 _ 4202
@05 ¢ [ G e, E@) = £10) (30)
By subtracting this with eq. (21), we find
Aa*(t) = (=%)(t) — 2(t)° . (31)
= ((*)(0) — 2(0)*) + Dt + ((v*) — 7°)¢? (32
= Az*(0) + Dt + Av*t?, (33
and we can write D as
D=2 [ s @)V, fo(p) - V)~ 26(0) -0 (34)
=2 [ G )V B) - (V) — 9), (39

where we can combine the terms since we recognise they share the expression for &(0),
however there remains a difference because Z(t)? uses the mean velocity v, while (x?)(t)
uses the local velocity V,E(p).

In (x%)(t), each momentum mode carries its own velocity, while in &(¢)?, the motion is
summarised by the average group velocity.

3.2. Calculate the action of the Poincaré group on é(p) starting from

U(A,a)px)U(A, a)' = Ry (A ) (Ax + a). (36)

Solution: Recall the definition of the Fourier-transformed field:

op) = / a7 o(z). (37)

Page 3 of 7



Matthew Black Haag-Ruelle Scattering Tutorials June 11, 2025

Now applying the action of the Poincaré group,

U(A,a)pp)U(A,a)™" = / d'z e U (N, a)pa)U(A,a)™ (38)
= / d*z P (A (z — a)). (39)
Now if we change variables: y = A~!(z — a), x = Ay + a, d*z = d*y, then
U @opU(8,a) ! = [ dyerriog) (40)
= [ty ) (a1)
U(A,a)p@)U(A, a)7! = P g(A'p). (42)
3.3. Prove that
e Ma(f)1) = a(f)T]9). (43)

Solution: With the creation operator defined

al 1O = _ & =
(19 = [ Gmp @) = 1. (14)
then
—iHt _ d’p —iHt §
(119 = [ G " @ (45)
_ dp
- | ar ) (16)
= a(7)'19). (47)

3.4. Using arguments similar to those in section 3.2.3, show that the operator a(f) annihilates
the vacuum, i.e.

a(f)|2) = 0. (48)
Solution: The annihilation operator can be written

o) = 77 | P (19)

So as was the strategy for the creation operator, we need to know how the integrand acts on
the vacuum:

F(p)o(p)|Q2) = P1F(p)o(p)|2) (50)
=) [ o)) o)
=) [ s [ el 52)
= ) [ i (206 + E(@)5 (-4 0. (53)
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Note that this result will project onto a state |—¢) which has negative energy, however the
function F'(p) requires that states be on the positive mass shell, so Therefore,

F(p)d(p)|Q) = 0. (54)

3.5. Calculate the matrix element (p|¢X(z)7|Q2) for the smeared field ¢X(x), where x(z) is defined

X(p)" = V2E(p) {(po — E(p)) 7i(p). (55)
Solution: Reminder of the smeared field:
@) = [ty - o) (56)
The matrix element can be written
lo@)10) = [ty (o - o) plotw)io) (57)
where in the lectures we saw that
Blo(w) 1) = 212, (58)
So then
Wi (@)110) = 2 [ diy (@ ). (59)

If we recognise the complex conjugate of the Fourier transform of x as
X(q)* — /d4Z X*(Z)e—iqz _— /d4y X*(iU o y)e:l:iqy — e:tiqxi*(:tq)7 (60)
then

(ploX(2)10) = Z'2x* (p)e™™. (61)

3.6. Check that, in the case of the free theory, the creation operator a(f)" defined

wpi— L[ dp it
' = 57 [ g 0 0) -

A

S / (ijj F@0)epo — E(p)) &' (0),

coincides with the creation operator defined in the free theory integrated against the wave-
function f(p).

Solution: Recall the scalar field,

¢($> _ /@JquE@ [a(q)e—iE(p)xo—l—iqaz + a(q)]‘ez‘E(q)xo—z‘qw] ’ (63)
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which is Hermitian, i.e. ¢'(x) = ¢(x). The conjugate of the Fourier-transformed field is

50)f = [ dize (@) (64)
4, . —ipx d3q t iE(q)zo—iqx —iE(q)zo+iqx
= d e W [a(q) (& 0 + G(Q)@ 0 :| (65)
43 . . . .
~ [ s [ e fala) e g e ()

and now performing the position integral yields delta functions:

- [ i [o(a) 2mt — (@) 25— p

+a(q) 276 (po + E(q)) (27)*6% (q — p)|  (67)

and then performing the momentum integral yields

B 27
~ 2E(p)

Now we can insert this into a(f):

a(p)'6(po — E()) + a(p) d(po + E(p))]. (68)

a(p)'6(p0 — E(p)) + alp) 6(po + E(p))].
(69)

) = 7 [ el )~ Bl 5

The ((po — E(p)) function selects only states on the positive mass shell, so what does it do to
our result above? Consider the py integrals:

/ dpo C(po — E(p))d(po — E(p)) = 1, (70)

/ dpo C(po — E(p))(po + E(p)) = 0. (71)

So ¢ cuts off the contribution which would yield negative energy. We then find

d? A
o) = 57 | Gap (@ @) (72)
3.7. Consider the operator .
A(D) = i [ Ea @) oM ea) (73)

Check that, in the case of the free theory, A;(f) does not depend on .

Solution: First, we remind ourselves of the full definition of f;(x):

x) = ds—pei”w f = —d3p e iE(p)t+ipz ¢
o) = [ G e = [ e i) ()
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Then, inserting the standard definition for ¢ into the smeared field, we find
d3q . . . ,
X(t. 2V = | d*yvi(r — / —iE(q)t' +iqy ToiE(q)t —iqy
d3q , L , .
_ d*uxt(r — —iB(q)t'+igy teiB(@)t' —iqy |
/ @r)%2E(q) / yx“(z—y) [a(q)e +a(q)'e (76)

Recalling eq. (60) for the Fourier transform of x*, we have

d3q . . . )
X (¢ T —iE(q)t+iqr ox T iE(q)t—iqx ~* )
0 (t0)) = [ gt falae ) +alger o).
We know that .
X'(q) = V2E(q)C(q0 — E(q))ii(q). (78)
This selects only the positive energy components, which is got from the a(q)" term, so
ngX(t a:)T — /La( )TeiE(q)t—iqw~( ) (79)
| (2n) 2B i
Now inserting back into A:(f):
1
() = iz [ o flw) o) (30)

= 1 3 LB*iE(P)tJr’iPwA d’q ala) 7 (q)eiE@t—igx
Zl/Q/d /(%)%/% f(p>/(27r)3 25(q) (a)"(q)

(81)
_ d’p ; dq i 3, i(B(a)~E(a)t—i(a—p)a
B 21/2/(271')3 2E(p)f<p)/(27r)3 2E(q) (@)'ile) /d

(82)
_ ! d’p f _ dq ala)t7 3 6@) (g — p) e B@t—iEP)t
7 | s ® | G @ (@ 00 g —p)

(83)
- 17 | G @) a®)io), (s1)

where we see the time dependence drops out.
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