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Lecture 3: One-particle states

3.1. Prove

x̄(t) = x̄(0) + v̄ t, (1)

∆x2(t) = ∆x2(0) +Dt+∆v2t2, (2)

by using the definition of ft(x),

ft(x) =

∫
d3p

(2π)3
√
2E(p)

eipxf̂t(p) =

∫
d3p

(2π)3
√

2E(p)
e−iE(p)t+ipxf̂(p), (3)

and the properties of the Fourier transform and calculate the coefficient D in terms of the
wavefunction f̂(p).

Solution:

a) Starting with

x(t) =

∫
d3xx|ft(x)|2, (4)

we want to calculate the time derivative d
dt
x(t) and then integrate it to get the expression

for x̄(t). First, using the definition of ft(x), we can rewrite the position-space integral
in momentum space.

x(t) =

∫
d3xx

[∫
d3q

(2π)3
√

2E(q)

d3p

(2π)3
√

2E(p)
ei(p−q)·xf̂ ∗

t (q)f̂t(p)

]
(5)

=

∫
d3q

(2π)3
√
2E(q)

d3p

(2π)3
√
2E(p)

f̂ ∗
t (q)f̂t(p)

[∫
d3xxei(p−q)·x

]
. (6)

This inner x integral is a standard trick in Fourier analysis:∫
d3x xje

i(p−q)·x = i
∂

∂pj
δ(3)(p− q). (7)

So the whole expression becomes

x(t) =

∫
d3p

(2π)32E(p)
f̂ ∗
t (p)(i∇p)f̂t(p). (8)

Now apply the time derivative:

d

dt
x(t) =

∫
d3p

(2π)32Ep

[
∂f̂ ∗

t (p)

∂t
· (i∇p)f̂t(p) + f̂ ∗

t (p) · i∇p

(
∂f̂t(p)

∂t

)]
. (9)

Recall that the momentum-space wavefunction evolves with time as

f̂t(p) = e−iE(p)tf̂0(p). (10)

So the time derivatives of the wavefunction are

∂f̂t(p)

∂t
= −iE(p)f̂t(p),

∂f̂ ∗
t (p)

∂t
= iE(p)f̂ ∗

t (p). (11)
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Now plug these into the time derivative:

d

dt
x(t) =

∫
d3p

(2π)32E(p)

[
(iE(p)f̂ ∗

t (p)) · (i∇pf̂t(p)) + f̂ ∗
t (p) · i∇p(−iE(p)f̂t(p))

]
(12)

=

∫
d3p

(2π)32E(p)

[
−E(p)f̂ ∗

t (p)∇pf̂t(p) + |f̂t(p)|2∇pE(p) + E(p)f̂ ∗
t (p)∇pf̂t(p)

]
.

(13)

Notice that the first and third terms cancel each other. What’s left is then:

d

dt
x(t) =

∫
d3p

(2π)32E(p)
|f̂t(p)|2∇pE(p). (14)

So what is ∇pE(p)?

E(p) =
√

|p|2 +m2 =⇒ ∇pE(p) =
p

E(p)
. (15)

Substituting this in:

d

dt
x(t) =

∫
d3p

(2π)32E(p)
|f̂t(p)|2

p

E(p)
= v̄(t). (16)

[Note: of course, it can be sufficient simply to identify the velocity v̄(t) and integrate.]
Finally integrating, we get

x̄(t) = x(0) + v̄t. (17)

b) Starting from

∆x2(t) =

∫
d3x [x− x̄(t)]2|ft(x)|2, (18)

we can expand this to see what must be quantified:

∆x2(t) =

∫
d3xx2|ft(x)|2 − 2x̄(t)

∫
d3xx|ft(x)|2 + x̄(t)2

∫
d3x |ft(x)|2 (19)

= ⟨x2⟩t − x̄(t)2. (20)

We already have

x̄(t) = x(0) + v̄t =⇒ x̄(t)2 = x(0)2 + 2tx(0)v̄ + v̄2t2, (21)

so we need to calculate ⟨x2⟩t. In momentum space, the position operator is

x = i∇p =⇒ x2 = −∇2
p, (22)

so

⟨x2⟩(t) =
∫

d3p

(2π)32E(p)
f̂ ∗
t (p)(−∇2

p)f̂t(p). (23)

Applying the derivative to the wavefunction, we find

∇pf̂t(p) = ∇p(f̂t(p)) = ∇p

(
e−iE(p)tf̂0(p)

)
(24)

= e−iE(p)t
[
−it(∇pE(p))f̂0(p) +∇f̂0(p)

]
(25)

∇2
pf̂t(p) = e−iE(p)t

[
− t2(∇pE(p))2f̂0(p)− 2it∇pE(p) · ∇pf̂0(p)

− it(∇2
pE(p))f̂0(p) +∇2

pf̂0(p)

]
(26)
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Now insert this result into eq. (23):

⟨x2⟩(t) = −
∫

d3p

(2π)32E(p)
eiE(p)tf̂ ∗

0 (p)e
−iE(p)t ×

[
− t2(∇pE(p))2f̂0(p)

− 2it∇pE(p) · ∇pf̂0(p)− it(∇2
pE(p))f̂0(p) +∇2

pf̂0(p)

]
(27)

Let’s take this by powers of t:

➤ t0 term:

⟨x2⟩(t) ⊃
∫

d3p

(2π)32E(p)
f̂ ∗
0 (p)(−∇2

pf̂0(p)) = ⟨x2⟩(0) (28)

➤ t1 term:

⟨x2⟩(t) ⊃ −2it

∫
d3p

(2π)32E(p)
f̂ ∗
0∇pf̂0 · ∇pE(p) (29)

➤ t2 term:

⟨x2⟩(t) ⊃ t2
∫

d3p

(2π)32E(p)
|f̂0(p)|2(∇pE(p))2 = t2⟨v2⟩ (30)

By subtracting this with eq. (21), we find

∆x2(t) = ⟨x2⟩(t)− x̄(t)2 (31)

= (⟨x2⟩(0)− x̄(0)2) +Dt+ (⟨v2⟩ − ¯⃗v2)t2 (32)

= ∆x2(0) +Dt+∆v2t2, (33)

and we can write D as

D = −2i

∫
d3p

(2π)32E(p)
f̂ ∗
0 (p)∇pf̂0(p) · ∇pE(p)− 2x̄(0) · v̄ (34)

= −2i

∫
23p

(2π)32E(p)
f̂ ∗
0 (p)∇pf̂0(p) · (∇pE(p)− v̄) , (35)

where we can combine the terms since we recognise they share the expression for x̄(0),
however there remains a difference because x̄(t)2 uses the mean velocity v̄, while ⟨x2⟩(t)
uses the local velocity ∇pE(p).

In ⟨x2⟩(t), each momentum mode carries its own velocity, while in x̄(t)2, the motion is
summarised by the average group velocity.

3.2. Calculate the action of the Poincaré group on ϕ̃(p) starting from

U(Λ, a)ϕ(x)U(Λ, a)−1 = Rnm(Λ
−1)ϕm(Λx+ a). (36)

Solution: Recall the definition of the Fourier-transformed field:

ϕ̃(p) =

∫
d4x eipx ϕ(x). (37)
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Now applying the action of the Poincaré group,

U(Λ, a)ϕ(p)U(Λ, a)−1 =

∫
d4x eipxU(Λ, a)ϕ(x)U(Λ, a)−1 (38)

=

∫
d4x eipxϕ(Λ−1(x− a)). (39)

Now if we change variables: y = Λ−1(x− a), x = Λy + a, d4x = d4y, then

U(Λ, a)ϕ(p)U(Λ, a)−1 =

∫
d4y eip(Λy+a)ϕ(y) (40)

= eipa
∫

d4y ei(Λ
−1p)·yϕ(y) (41)

U(Λ, a)ϕ(p)U(Λ, a)−1 = eipaϕ̃(Λ−1p). (42)

3.3. Prove that
e−iHta(f)†|Ω⟩ = a(ft)

†|Ω⟩. (43)

Solution: With the creation operator defined

a(f)†|Ω⟩ =
∫

d3p

(2π)32E(p)
f̂(p)|p⟩ = |f⟩, (44)

then

e−iHta(f)†|Ω⟩ =
∫

d3p

(2π)32E(p)
e−iHtf̂(p)|p⟩ (45)

=

∫
d3p

(2π)32E(p)
f̂t(p)|p⟩ (46)

= a(ft)
†|Ω⟩. (47)

3.4. Using arguments similar to those in section 3.2.3, show that the operator a(f) annihilates
the vacuum, i.e.

a(f)|Ω⟩ = 0. (48)

Solution: The annihilation operator can be written

a(f) =
1

Z1/2

∫
d4p

(2π)4
F (p)ϕ̃(p). (49)

So as was the strategy for the creation operator, we need to know how the integrand acts on
the vacuum:

F (p)ϕ̃(p)|Ω⟩ = P1F (p)ϕ̃(p)|Ω⟩ (50)

= F (p)

∫
d3q

(2π)32E(q)
|q⟩⟨q|ϕ(p)|Ω⟩ (51)

= F (p)

∫
d3q

(2π)32E(q)

∫
d4x eipx|q⟩⟨q|ϕ(x)|Ω⟩ (52)

= F (p)

∫
d3q

(2π)32E(q)
(2π)4δ(p0 + E(q))δ(3)(p+ q). (53)

Page 4 of 7

https://scattering-lectures-eda7b9.gitlab.io/30-1p-states.html#sec-1p-creation-fundproperty


Matthew Black Haag-Ruelle Scattering Tutorials June 11, 2025

Note that this result will project onto a state |–q⟩ which has negative energy, however the
function F (p) requires that states be on the positive mass shell, so Therefore,

F (p)ϕ̃(p)|Ω⟩ = 0. (54)

3.5. Calculate the matrix element ⟨p|ϕχ(x)†|Ω⟩ for the smeared field ϕχ(x), where χ(x) is defined

χ̃(p)∗ =
√

2E(p) ζ̃(p0 − E(p)) η̃(p). (55)

Solution: Reminder of the smeared field:

ϕχ(x)† =

∫
d4y χ∗(x− y)ϕ(y)†. (56)

The matrix element can be written

⟨p|ϕχ(x)†|0⟩ =
∫

d4y χ∗(x− y)⟨p|ϕ(y)†|Ω⟩, (57)

where in the lectures we saw that

⟨p|ϕ(y)†|Ω⟩ = Z1/2eipy. (58)

So then

⟨p|ϕχ(x)†|0⟩ = Z1/2

∫
d4y χ∗(x− y) eipx. (59)

If we recognise the complex conjugate of the Fourier transform of χ as

χ̃(q)∗ =

∫
d4z χ∗(z)e−iqz =⇒

∫
d4y χ∗(x− y)e±iqy = e±iqxχ̃∗(±q), (60)

then

⟨p|ϕχ(x)†|0⟩ = Z1/2χ∗(p)eipx. (61)

3.6. Check that, in the case of the free theory, the creation operator a(f)† defined

a(f)† =
1

Z1/2

∫
d4p

(2π)4
F (p)ϕ̃†(p)

=
1

Z1/2

∫
d4p

(2π)4
f̂(p)ζ̃(p0 − E(p)) ϕ̃†(p),

(62)

coincides with the creation operator defined in the free theory integrated against the wave-
function f̂(p).

Solution: Recall the scalar field,

ϕ(x) =

∫
d3q

(2π)32E(q)

[
a(q)e−iE(p)x0+iqx + a(q)†eiE(q)x0−iqx

]
, (63)
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which is Hermitian, i.e. ϕ†(x) = ϕ(x). The conjugate of the Fourier-transformed field is

ϕ̃(p)† =

∫
d4xe−ipxϕ†(x) (64)

=

∫
d4xe−ipx

∫
d3q

(2π)32E(q)

[
a(q)†eiE(q)x0−iqx + a(q)e−iE(q)x0+iqx

]
(65)

=

∫
d3q

(2π)32E(q)

∫
d4x

[
a(q)†ei(E(q)−p0)x0ei(q−p)x + a(q)ei(E(q)+p0)ei(q−p)x

]
, (66)

and now performing the position integral yields delta functions:

=

∫
d3q

(2π)32E(q)

[
a(q)† 2πδ(p0 − E(q)) (2π)3δ(3)(q − p)

+ a(q) 2πδ(p0 + E(q)) (2π)3δ(3)(q − p)
]

(67)

and then performing the momentum integral yields

=
2π

2E(p)

[
a(p)†δ(p0 − E(p)) + a(p) δ(p0 + E(p))

]
. (68)

Now we can insert this into a(f)†:

a(f)† =
1

Z1/2

∫
d4p

(2π)4
f̂(p)ζ̃(p0 − E(p))

2π

2E(p)

[
a(p)†δ(p0 − E(p)) + a(p) δ(p0 + E(p))

]
.

(69)

The ζ̃(p0 −E(p)) function selects only states on the positive mass shell, so what does it do to
our result above? Consider the p0 integrals:∫

dp0 ζ̃(p0 − E(p))δ(p0 − E(p)) = 1, (70)∫
dp0 ζ̃(p0 − E(p))δ(p0 + E(p)) = 0. (71)

So ζ̃ cuts off the contribution which would yield negative energy. We then find

a(f)† =
1

Z1/2

∫
d3p

(2π)32E(p)
f̂(p) a†(p). (72)

3.7. Consider the operator

At(f) =
1

Z1/2

∫
d3x ft(x)ϕ

χ(t,x)†. (73)

Check that, in the case of the free theory, At(f) does not depend on t.

Solution: First, we remind ourselves of the full definition of ft(x):

ft(x) =

∫
d3p

(2π)3
√
2E(p)

eipxf̂t(p) =

∫
d3p

(2π)3
√

2E(p)
e−iE(p)t+ipxf̂(p). (74)
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Then, inserting the standard definition for ϕ into the smeared field, we find

ϕχ(t,x)† =

∫
d4y χ∗(x− y)

∫
d3q

(2π)32E(q)

[
a(q)e−iE(q)t′+iqy + a(q)†eiE(q)t′−iqy

]
(75)

=

∫
d3q

(2π)32E(q)

∫
d4y χ∗(x− y)

[
a(q)e−iE(q)t′+iqy + a(q)†eiE(q)t′−iqy

]
. (76)

Recalling eq. (60) for the Fourier transform of χ∗, we have

ϕχ(t,x)† =

∫
d3q

(2π)32E(q)

[
a(q)e−iE(q)t+iqxχ̃∗(−q) + a(q)†eiE(q)t−iqxχ̃∗(q)

]
. (77)

We know that
χ̃∗(q) =

√
2E(q)ζ̃(q0 − E(q))η̃(q). (78)

This selects only the positive energy components, which is got from the a(q)† term, so

ϕχ(t,x)† =

∫
d3q

(2π)3
√

2E(q)
a(q)†eiE(q)t−iqxη̃(q). (79)

Now inserting back into At(f):

At(f) =
1

Z1/2

∫
d3x ft(x)ϕ

χ(t,x)† (80)

=
1

Z1/2

∫
d3x

∫
d3p

(2π)3
√
2E(p)

e−iE(p)t+ipxf̂(p)

∫
d3q

(2π)3
√
2E(q)

a(q)†η̃(q)eiE(q)t−iqx

(81)

=
1

Z1/2

∫
d3p

(2π)3
√

2E(p)
f̂(p)

∫
d3q

(2π)3
√

2E(q)
a(q)†η̃(q)

∫
d3x ei(E(q)−E(q))t−i(q−p)x

(82)

=
1

Z1/2

∫
d3p

(2π)3
√

2E(p)
f̂(p)

∫
d3q

(2π)3
√

2E(q)
a(q)†η̃(q) (2π)3 δ(3)(q − p) eiE(q)t−iE(p)t

(83)

=
1

Z1/2

∫
d3p

(2π)32E(p)
f̂(p) a(p)†η̃(p), (84)

where we see the time dependence drops out.
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