Matthew Black Haag-Ruelle Scattering Tutorials June 12, 2025

’ Lecture 4: Asymptotic multi-particle states ‘

4.1. Let f*(p) be the wavefunctions considered in this chapter. Calculate the following con-
nected 2-point functions

(A(f) AT (1)

for any combination of o, 8 = 1,2, in terms of the momentum-space wavefunctions f* (p).

Solution: We saw that

AN = eMa(f)19) = e 17) = 1f7), (2)
7= [ i ) 3)
With the conjugate (0[A,(f*) = (£, then
(AP AP = (oL F7) (W
~ [ e ) [ e) al) 5)
~ [ i@ [ G PR 2B @ g - p) ©
- [ i@ ) "

4.2. Let f “(p) be the wavefunctions considered in this chapter. Derive the cluster decomposition
of the following 4-point function:

QA A A A1), (8)

identifying which terms vanish identically. Use the results of Problem 4.1 to simplify your
answer.

Solution: The full decomposition follows section 4.3.2:
QA AL AP A1)
= (A AP AT A e + (A A AT A) e
e

(A A DAL AT e+ (AP AT (A ) A

H (A D) AA A TA) e + (A)) AP AP AT e

+ (AN (A A A e + (A A ) AP A (9)
+ (A D (A AAS)T AT e + (A1) (AT {AF) A e

H (A (A AC) T e+ (AP (AN (AFD AT e

H (A (A CAFD AT e + (A DA (A D AT e

+ (A (A A )Tl A ) e

°)f
We know that all 1-point functions (A,(f*)")). = 0 so we are left with
(f

QA A AT A1)
= (A (A AT A e + (A DA (AT AT (10)
+ (A AN A A e + (A A (A2 A(f2) e

Page 1 of 3


https://scattering-lectures-eda7b9.gitlab.io/40-mp-states.html#sec-mp-states-proof-cvev

Matthew Black Haag-Ruelle Scattering Tutorials June 12, 2025

Since A;(f") annihilates the vacuum, any n-point function with one of these on the right is
also zero, i.e. (A;(f")A;(f%)). = 0. We are left with:

QA A AT A1)
= (A (A AT A (11)
+ (A AN A A e + (A A (A2 A(f2) e

We can see the form of the connected 2-point functions in eq. (7), and so we have

AP, = [ G @ @) [ i@ ),
(12)

AP AN, = [ G @ (@) [ Gt e Pla)
(13)

and since we assume fo‘ are the wavefunctions discussed through the lectures, we know that
they are normalised to unity and orthonormal, i.e.

d3q fel o ) , ) ) -
/ by @@ =0 = (AHAFAAG A =0 (14

d3q il o . ) , , -
/ b @F @ =1 = (AHAFLADHA ) =1 (19)

The connected 4-point function can be written as

<At(fl)At(f2)At(fz)TAt(fl)T>c - % /d3x1 dxy d*zs dz ftl*(w4) 1&2*(‘133) ftZ(wZ) ftl(wl)
X <¢?L<(t7 w4)¢§<t7 w3)¢§ (ta w2>T¢§(t7 wl)T>C (16)
1

(AP AF) AT Ao = 5 TP (8). (17)

The total 4-point function is therefore

(AUAP AP ALY =1+ I (), (18)

4.3. Let fo (p) be the wavefunctions considered in this chapter. Calculate the t — oo limit of
the 4-point function in Problem 4.2, and show that the limit is approached with an error
that vanishes rapidly.

Solution: We can see in eq. (18) that it is the 4-point connected piece which is dependent
on time and so we need to take the ¢t — oo limit for [*P*=¢™(¢). Following Ruelle’s cluster
theorem, we can write that the Wightman function

(@Y (t, 1) 03 (1, 1) (t, 23) 95 (¢, @) )
in *Pt=conn(¢) is hounded
B,

Wiz, 29,23)| < ,
Wz 2 2)| < T F m) A Tzl

(19)
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where we have transformed the variables
Zo = Xy, — 7. (20)
Following the implications of this, we will find

|ft2(332)ft1(331)|
(1 + [zo — @1])

@) < C, / &1 drs L — ), (21)

Now it is better to define the velocity-space wavefunctions

5 32em N f (tw), o] < 1,
3 ft(tv>’ |'l)| 2 1.
Changing variables to velocity, (21) becomes
h?(va)h}|
J(t)=C, | dv,d® [hi UL 23
()=, [ o dbo L 23)

Following Theorem 4.4, we define the open sets U;, Uy containing the sets of velocities
V(fY), V(f?), and we can separate the integration domain into four pieces,

J(t) = J(t; Uy, Up) + J(t; Uy, Us) + J(t; Uy, Us) + J(t;UT, Us), (24)

and then each sub-integral vanishes asymptotically:

d3v 2
.JTC ¢\ < —2r
J(t7 U17U2) ~ CT-DLT‘DQ,T {/ —(1 + |v|)7"} t ; (25)
J(t;US,Us) < Dy, D! /L e (26)
y V1,V2) = 1,r79 (1+|’U|)3 3
J(t: UL, US) < DD / v Ve (27)
9 1, 2) = 1 2,7‘ (1 + ‘,v|)3 3
d3v 2
J(t; Uy, Us) < C,.D, D d(Uy, Uy) " 377 /—} : 28
( 1 2)— 12 ( 1 2) { (1—|—|’U|)T ( )
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